DFROBOT SEN0322

Gravity: I2C Electrochemical Oxygen Sensor User Manual

Model: SEN0322 | Brand: DFROBOT

1. Uvod

The DFROBOT Gravity: I2C Electrochemical Oxygen Sensor is a high-accuracy module designed for precise measurement of ambient oxygen concentration. Utilizing advanced electrochemical principles, this sensor offers exceptional anti-interference capabilities, high stability, and superior sensitivity. It is an ideal solution for a wide range of applications including portable devices, air quality monitoring systems, and industrial environments such as mines, warehouses, and other spaces where air circulation may be limited.

This compact sensor provides an I2C output, allowing for seamless integration with popular microcontrollers like Arduino Uno, ESP32, and Raspberry Pi. Its plug-and-play design, coupled with readily available sample code, simplifies development and deployment, making it suitable for both educational and professional projects.

2. Proizvod je gotovview

2.1 Ključne karakteristike

  • High-Accuracy Oxygen Detection: Measures O₂ concentration from 0% to 25% Vol with a resolution of 0.15% Vol.
  • High Precision & Anti-Interference: Features excellent sensitivity (0.10±0.05 mA in air), repeatability (<2%), and long-term stability (<2%/month).
  • Brzo vrijeme odziva: Provides reliable readings with a response time of ≤15 seconds.
  • Široka kompatibilnost: Operates with 3.3V to 5.5V DC input and outputs via I2C, compatible with Arduino, ESP32, and Raspberry Pi.
  • Plug & Play: Includes Gravity interface and sample code for quick setup and calibration.
  • Izdržljiv i pouzdan: Designed for industrial-grade reliability with a 2-year lifespan in air and robust performance in harsh conditions (-20~50°C, 0~99%RH non-condensing).

2.2 Komponente

The Gravity: I2C Electrochemical Oxygen Sensor package includes the following components:

  • Gravity: I2C Electrochemical Oxygen Sensor Module (SEN0322)
  • Gravity-4P I2C/UART Sensor Cable
  • Montažni vijci
Gravity I2C Electrochemical Oxygen Sensor kit contents

Figure 2.2.1: Gravity: I2C Electrochemical Oxygen Sensor module with connecting cable and mounting screws.

2.3 Sensor Layout

Top view of the Gravity I2C Electrochemical Oxygen Sensor

Slika 2.3.1: Vrh view of the sensor module, showing the oxygen sensing element.

Dno view of the Gravity I2C Electrochemical Oxygen Sensor

Slika 2.3.2: Dno view of the sensor module, displaying the Gravity interface and I2C pins.

Diagram of sensor top view with LED and Calibration Button labels

Figure 2.3.3: Diagram illustrating the LED indicator and Calibration Button on the sensor module.

Diagram of sensor bottom view with I2C pin labels

Figure 2.3.4: Diagram showing the I2C communication pins (SDA, SCL, GND, VCC) and address selection switch.

3. Podešavanje

3.1 Povezivanje hardvera

The Gravity: I2C Electrochemical Oxygen Sensor connects to your microcontroller via the I2C interface. Use the provided Gravity-4P I2C/UART Sensor Cable for connection.

  1. Connect the 4-pin Gravity cable to the sensor module's connector.
  2. Connect the other end of the Gravity cable to the I2C port on your Arduino, ESP32, or Raspberry Pi board. Ensure the pins are matched correctly:
    • SDA (Data Line) to SDA pin on microcontroller
    • SCL (Clock Line) to SCL pin on microcontroller
    • VCC (Power) to 3.3V or 5V (compatible with 3.3V-5.5V)
    • GND (Ground) to GND pin on microcontroller
  3. Optionally, adjust the I2C address using the switch on the back of the sensor if multiple I2C devices are used and address conflicts arise. Refer to the sensor's datasheet for default and alternative addresses.
Connection diagram of oxygen sensor to Arduino

Slika 3.1.1: Prample hardware connection of the oxygen sensor to an Arduino board.

3.2 Podešavanje softvera

To interface with the sensor, you will need to use the appropriate library for your chosen microcontroller platform. DFROBOT provides sample code and libraries for Arduino, ESP32, and Raspberry Pi, which can typically be found on their official product page or GitHub repository.

  1. Download and install the necessary library for the Gravity: I2C Electrochemical Oxygen Sensor (e.g., `DFRobot_OxygenSensor` for Arduino IDE).
  2. Otvori example sketch provided with the library. This sketch typically includes basic code for initializing the sensor, performing calibration, and reading oxygen concentration.
  3. Upload the code to your microcontroller.

4. Uputstvo za upotrebu

4.1 Kalibracija

The sensor can be calibrated in the air, which is typically assumed to have an oxygen concentration of 20.9% Vol. Follow these steps for calibration:

  1. Ensure the sensor is connected and powered on.
  2. Place the sensor in a well-ventilated area with normal atmospheric air.
  3. Press and hold the calibration button on the sensor module for approximately 3-5 seconds until the LED indicator changes state (e.g., blinks or changes color), indicating calibration mode.
  4. Release the button. The sensor will perform an automatic calibration based on the ambient oxygen level. The LED will typically return to its normal operating state once calibration is complete.
  5. Alternatively, some libraries may allow software-based calibration. Refer to the specific library documentation for details.

4.2 Reading Oxygen Data

After successful setup and calibration, you can read the oxygen concentration data from the sensor. The provided sample code will typically demonstrate how to do this.

  • Initialize the sensor object in your code.
  • Use the appropriate function (e.g., `getOxygenData()` or `readOxygenConcentration()`) from the sensor library to retrieve the current oxygen level.
  • The data will be returned as a floating-point number representing the oxygen concentration in percentage by volume (% Vol).
  • You can then display this data on a serial monitor, LCD, or integrate it into your application logic.

5. Održavanje

5.1 Čišćenje

The sensor module generally requires minimal cleaning. If dust or debris accumulates on the sensor surface, gently wipe it with a soft, dry, lint-free cloth. Avoid using liquid cleaners or abrasive materials, as these can damage the sensing element.

5.2 Skladištenje

When not in use, store the sensor in a cool, dry environment, away from direct sunlight and extreme temperatures. Keep it in its original packaging or an anti-static bag to protect it from physical damage and electrostatic discharge.

5.3 Sensor Lifetime

The electrochemical sensing element has a typical lifespan of 2 years when exposed to air. The sensor's performance may degrade over time, and recalibration or replacement may be necessary to maintain accuracy.

6. Otkrivanje problema

IssueMogući uzrokRješenje
No data output / Sensor not detectedNeispravno ožičenje
Incorrect I2C address
Problem sa napajanjem
Library not installed or incorrect code
Verify all connections (SDA, SCL, VCC, GND).
Check the I2C address switch setting and ensure it matches the code.
Confirm power supply is within 3.3V-5.5V.
Ensure the correct library is installed and the sample code is uploaded correctly.
Netačna očitavanjaSenzor nije kalibriran
Mešanje životne sredine
Sensor aging
Perform air calibration as described in Section 4.1.
Ensure the sensor is in a stable environment during measurement.
Consider sensor replacement if it's past its expected lifespan or consistently provides erratic readings after recalibration.
Calibration failsIncorrect calibration procedure
Sensor not in fresh air
Neispravan senzor
Review calibration steps carefully.
Ensure the sensor is in an open area with normal atmospheric oxygen (approx. 20.9% Vol) during calibration.
If issues persist, the sensor may be faulty.

7. Specifikacije

ParametarVrijednost
Domet detekcije0 ~ 25% Vol
Rezolucija0.15% vol
Preciznost±1.5% Vol (typical)
Vrijeme odziva (T90)≤15 sekundi
Operating Voltage3.3V ~ 5.5V DC
Izlazni interfejsI2C
Radna temperatura-20°C ~ 50°C
Radna vlažnost0 ~ 99% relativne vlažnosti (bez kondenzacije)
Životni vijek senzora2 godina (u vazduhu)
Dimenzije (Modul)Pribl. 2.48 x 2.2 x 1.14 inča (63 x 56 x 29 mm)
Težina37 grama (1.31 unce)
MaterijalNajlon

8. Garancija i podrška

DFROBOT products are designed for reliability and performance. For specific warranty information, technical support, or further assistance, please refer to the official DFROBOT website or contact their customer service directly. You can often find detailed datasheets, application notes, and community forums on their support pages.

DFROBOT Official Webstranica: https://www.dfrobot.com/

Povezani dokumenti - SEN0322

Preview H3LIS200DL Trostruki akcelerometar - DFRobot
DFRobot-ov H3LIS200DL je troosni linearni akcelerometar niske snage i visokih performansi s mogućnošću odabira skala (±100g/±200g) i I2C interfejsom. Idealan je za Arduino i Raspberry Pi projekte, nudeći funkcije poput detekcije slobodnog pada i detekcije udara.
Preview DFRobot Weather Station Manual: Assembly and Operation Guide
This comprehensive manual from DFRobot guides users through the assembly, software setup, and operation of the Weather Station kit. Learn to build and utilize your own environmental monitoring device.
Preview DFRobot SEN0158 Gravitacijska IR pozicionarna kamera - Specifikacije i vodič
Sveobuhvatni vodič za DFRobot SEN0158 Gravity IR pozicionersku kameru. Saznajte više o njenim karakteristikama, specifikacijama, rasporedu pinova, dijagramima povezivanja, Arduinu i obradi.ampkod i često postavljana pitanja o praćenju IR objekata i detekciji plamena.
Preview DFRobot senzor zamućenosti SEN0189: Specifikacije, priključak i Examples
Sveobuhvatan vodič za DFRobot senzor zamućenosti, SKU: SEN0189, s detaljnim tehničkim specifikacijama, analognim i digitalnim izlaznim načinima rada, dijagramima povezivanja i Arduino kodom.ampi karakteristike performansi za praćenje kvaliteta vode.
Preview Uputstvo za DFRobot meteorološku stanicu - Vodič za montažu, softver i korištenje
Sveobuhvatni vodič od DFRobot-a koji detaljno opisuje montažu, instalaciju softvera i metode rada za DFRobot meteorološku stanicu. Uključuje liste komponenti, dijagrame ožičenja i scenarije upotrebe.
Preview FireBeetle 2 ESP32-S3-U Minicomputer User Manual - DFRobot
User manual for the DFRobot FireBeetle 2 ESP32-S3-U minicomputer, featuring WiFi, Bluetooth, an OV2640 camera, and external antenna. Includes technical specifications, usage guidelines, and assembly instructions.